(1)令 g(x)=f(x)-
2x
x+2 =ln(x+1)-
2x
x+2 ,
则 g ′ (x)=
1
x+1 -
2(x+2)-2x
(x+2) 2 =
x 2
(x+1) (x+2) 2 .
∵x>0,∴g′(x)>0,∴g(x)在(0,+∞)上是增函数.
故g(x)>g(0)=0,即 f(x)>
2x
x+2 .
(2)原不等式等价于
1
2 x 2 -f( x 2 )≤ m 2 -2bm-3 .
令 h(x)=
1
2 x 2 -f( x 2 )=
1
2 x 2 -ln(1+ x 2 ) ,则 h ′ (x)=x-
2x
1+ x 2 =
x 3 -x
1+ x 2 .
令h′(x)=0,得x=0,x=1,x=-1.
∴当x∈[-1,1]时,h(x) max=0,∴m 2-2bm-3≥0.
令Q(b)=-2mb+m 2-3,则
Q(1)= m 2 -2m-3≥0
Q(-1)= m 2 +2m-3≥0
解得m≤-3或m≥3.