设函数f(x)=ln(x+1)(1)若x>0证明: f(x)> 2x x+2 .(2)若不等式 1 2 x 2 ≤f(

1个回答

  • (1)令 g(x)=f(x)-

    2x

    x+2 =ln(x+1)-

    2x

    x+2 ,

    则 g ′ (x)=

    1

    x+1 -

    2(x+2)-2x

    (x+2) 2 =

    x 2

    (x+1) (x+2) 2 .

    ∵x>0,∴g′(x)>0,∴g(x)在(0,+∞)上是增函数.

    故g(x)>g(0)=0,即 f(x)>

    2x

    x+2 .

    (2)原不等式等价于

    1

    2 x 2 -f( x 2 )≤ m 2 -2bm-3 .

    令 h(x)=

    1

    2 x 2 -f( x 2 )=

    1

    2 x 2 -ln(1+ x 2 ) ,则 h ′ (x)=x-

    2x

    1+ x 2 =

    x 3 -x

    1+ x 2 .

    令h′(x)=0,得x=0,x=1,x=-1.

    ∴当x∈[-1,1]时,h(x) max=0,∴m 2-2bm-3≥0.

    令Q(b)=-2mb+m 2-3,则

    Q(1)= m 2 -2m-3≥0

    Q(-1)= m 2 +2m-3≥0

    解得m≤-3或m≥3.