(1)连接AC,易知∠CAB=1/2 BAD=60° =∠ACF
△ABC为等边三角形
∵∠CAF+∠CAE=∠EAF=60°
∠BAE+∠CAE=∠CAB=60°
∴∠BAE=∠CAF
又 ∵∠EBA=∠FCA=60°
且AC=AB
∴△EBA≌△FCA
所以AE=AF
(2)∵AE=AF,∠EAF=60°
所以△EAF为等边△
∠AFE=60°
∠AFD=180°-∠FAD-∠D=180°-60°-45°=75°
所以∠CFE=180°-∠AFD-∠AFE=180°-75°-60°=45°
(1)连接AC,易知∠CAB=1/2 BAD=60° =∠ACF
△ABC为等边三角形
∵∠CAF+∠CAE=∠EAF=60°
∠BAE+∠CAE=∠CAB=60°
∴∠BAE=∠CAF
又 ∵∠EBA=∠FCA=60°
且AC=AB
∴△EBA≌△FCA
所以AE=AF
(2)∵AE=AF,∠EAF=60°
所以△EAF为等边△
∠AFE=60°
∠AFD=180°-∠FAD-∠D=180°-60°-45°=75°
所以∠CFE=180°-∠AFD-∠AFE=180°-75°-60°=45°