y=(sinx+a).(cosx+a)
=sinxcosx+a(sinx+cosx)+a^2,
令,sinx+cosx=t,则有√2sin(x+45)=t,
|t|≤√2.
sinxcosx=(t^2-1)/2.则有
y=(t^2-1)/2+ta+a^2
=[(t+a)^2+a^2-1]/2.
而,0
y=(sinx+a).(cosx+a)
=sinxcosx+a(sinx+cosx)+a^2,
令,sinx+cosx=t,则有√2sin(x+45)=t,
|t|≤√2.
sinxcosx=(t^2-1)/2.则有
y=(t^2-1)/2+ta+a^2
=[(t+a)^2+a^2-1]/2.
而,0