因为是等比数列,所以去掉奇数项,或者偶数项,数列仍为等比数列,公比为q^2
故有:
S奇 = 85 = a1(1-q^2n)/(1-q^2) = (1-q^2n)/(1-q^2)
S偶 = 170 = a2(1-q^2n)/(1-q^2)
所以,S偶/S奇 = 2 = a2/a1=q
故,q = 2
将q = 2代入 S奇 = (1-q^2n)/(1-q^2) = 85
(1-2^2n)/(1-4) = 85
求得 2^2n = 2^8
所以,2n = 8
即公比为2,项数为8
因为是等比数列,所以去掉奇数项,或者偶数项,数列仍为等比数列,公比为q^2
故有:
S奇 = 85 = a1(1-q^2n)/(1-q^2) = (1-q^2n)/(1-q^2)
S偶 = 170 = a2(1-q^2n)/(1-q^2)
所以,S偶/S奇 = 2 = a2/a1=q
故,q = 2
将q = 2代入 S奇 = (1-q^2n)/(1-q^2) = 85
(1-2^2n)/(1-4) = 85
求得 2^2n = 2^8
所以,2n = 8
即公比为2,项数为8