对“原式∫(b,a) [xf(x)f'(x)]dx”凑微分得
=∫(b,a) [xf(x)]df(x),用分部积分法得
=[xf(x)f(x)]代(b,a)-∫(b,a) [f(x)*(f(x)+xf'(x))]dx
=0-∫(b,a) f(x)f(x)dx-∫(b,a) [xf(x)f'(x)]dx= -1-∫(b,a) [xf(x)f'(x)]dx,最后一个积分是原式,得
原式=-1-原式,则原式=-1/2.
对“原式∫(b,a) [xf(x)f'(x)]dx”凑微分得
=∫(b,a) [xf(x)]df(x),用分部积分法得
=[xf(x)f(x)]代(b,a)-∫(b,a) [f(x)*(f(x)+xf'(x))]dx
=0-∫(b,a) f(x)f(x)dx-∫(b,a) [xf(x)f'(x)]dx= -1-∫(b,a) [xf(x)f'(x)]dx,最后一个积分是原式,得
原式=-1-原式,则原式=-1/2.