解题思路:根据等腰三角形的性质:等边对等角,以及三角形的内角和定理即可求得∠ECD的度数,即可作出判断.
不变化.
证明:∵AD=AC
∴∠ACD=∠ADC
同理,∠ECB=∠CEB
∵∠CEB+∠ADC+∠DCE=180°,
∴∠ACD+∠BCE+∠ECD=180°
即∠ACB+2∠ECD=180°
∴∠ECD=45°
则当∠B的度数变化时,∠DCE度数没有变化.
点评:
本题考点: 等腰三角形的性质.
考点点评: 本题主要考查了等腰三角形的性质:等边对等角,以及三角形的内角和定理,关键是理解∠ACD+∠BCE+∠ECD=180°即∠ACB+2∠ECD=180°.