已知f(x)=向量a×向量b-1,其中向量a=(根号3sin2x,cosx),向量b=(1,2cosx)(x∈R)

1个回答

  • f(x)=向量a.向量b-1.

    =√3sin2x+2cos^2x-1.

    =√3sin2x+1+cos2x-1.

    =2[(√3/2)sin2x+(1/2)cos2x].

    ∴f(x)=2sin(2x+π/6).

    (1) 由 2kπ+π/2≤2x+π/6≤2kπ+3π/2,k∈Z.

    得 kπ+π/6≤x≤kπ+2π/3,k∈Z.---即所求f(x)=2sin(2x+π/6)的单调递减区间;

    (2) 由题设f(A)=2,得:2sin(2A+π/6)=2,

    sin(2A+π/6)=1.

    ∴2A+π/6=π/2.

    ∴∠A=π/6.

    由正弦定理,得:a/sinA=b/sinB.sinB=bsinA/a.

    sinB=b*sin(π/6)/a.

    =3*(1/2)/√3.

    sinB=√3/2,

    ∴∠B=π/3,或∠B=2π/3.

    则 ∠C=π/2,或∠C=π/6.

    当C=π/2时,由勾股定理得:c=2√3;

    当C=π/6时,则c=a=√3.

    ∴c=√3,或c=2√3.