x1>x2>0
f(x1)-f(x2)
=(x1²-2x1+k)/(x1-1)-(x2²-2x2+k)/(x2-1)
通分
分母>0
分之=x1²x2-x1²-2x1x2+2x1+kx2-k-x1x2²+x2²+2x1x2-2x2-kx1+k
=x1x2(x1-x2)-(x1+x2)(x1-x2)+2(x1-x2)-k(x1-x2)
=(x1-x2)(x1x2-x1-x2+2-k)
x1-x2>0
所以要x1x2-x1-x2+2-k>0
(x1-1)(x2-1)>k-1
因为x1-1>1,x2-1>1
所以1>k-1
k