首项为1,且项数为奇数,则奇数项比偶数项多一项;不妨设偶数项有n项,则奇数项有n+1项;设公差为d;
则偶数项和奇数项公差为2d;
有:(1+2×n×d)×(n+1)/2=99;
[1+d+(2×n-1)×d]×n/2=90;
解得:n=10;
d=17/20;
首项为1,且项数为奇数,则奇数项比偶数项多一项;不妨设偶数项有n项,则奇数项有n+1项;设公差为d;
则偶数项和奇数项公差为2d;
有:(1+2×n×d)×(n+1)/2=99;
[1+d+(2×n-1)×d]×n/2=90;
解得:n=10;
d=17/20;