3道微积分的题目,麻烦高手赐教⑴ 2∫(下限是0,上限是正无穷大)*2x*e的(-2x)次方dx+3∫(下限是0,上限是

2个回答

  • (1)2∫(0,∞)2x*e^(-2x)dx+3∫(0,∞)3x*e^(-3x)dx

    首先求不定积分2∫2x*e^(-2x)dx+3∫3x*e^(-3x)dx

    由分部积分法容易求得

    2∫2x*e^(-2x)dx+3∫3x*e^(-3x)dx

    =-(2x*e^(-2x)+3x*e^(-3x)+e^(-2x)+e^(-3x))+C

    2∫(0,∞)2x*e^(-2x)dx+3∫(0,∞)3x*e^(-3x)dx

    =lim(b--∞)[-(2b*e^(-2b)+3b*e^(-3b)+e^(-2b)+e^(-3b))+2]

    =2

    (2)∫(0,2)dx∫(0,2)(1/8)*xy*(x+y)dy

    (i)∫(0,2)(1/8)*xy*(x+y)dy

    =(1/8)*∫(0,2)(x^2*y+x*y^2)dy

    =(1/8)*[∫(0,2)x^2*ydy+∫(0,2)x*y^2dy]

    =(1/4)x^2+(1/3)x

    (ii)∫(0,2)[(1/4)x^2+(1/3)x]dx

    =(1/4)∫(0,2)x^2dx+(1/3)∫(0,2)xdx

    =4/3

    (iii)

    ∫(0,2)dx∫(0,2)(1/8)*xy*(x+y)dy=4/3

    (3)∫(0,∞)(∫(0,∞)xye^(-x-y)dy)dx

    (i)

    ∫xye^(-x-y)dy

    =-∫xye^(-x-y)d(-x-y)

    =-xe^(-x-y)(y+1)+C

    ∫(0,∞)xye^(-x-y)dy

    =lim(b--∞)[-xe^(-x-b)(b+1)+xe^(-x)]

    =xe^(-x)

    (ii)

    ∫xe^(-x)dx

    =-∫x^e(-x)d(-x)

    =-∫xde^(-x)

    =-e^(-x)(x+1)+C

    ∫(0,∞)xe^(-x)dx

    =lim(b--∞)[-e^(-b)(b+1)+1]

    =1

    (iii)

    ∫(0,∞)(∫(0,∞)xye^(-x-y)dy)dx=1