我帮你分析一下:
原函数的导数:F'(X)=(2X+a)e^(3-x)-(x^2+ax+b)e^(3-x)=e^(3-X)[(2-a)x-X^2+(a-b)];
因为在X=3处有极值,因此F'(3)=0;代入解得:2a+b+3=0;
因此:b=-2a-3;函数的单调区间:令F’(X)=0;-X^2+(2-a)X+a-b=0;将b=-2a-3代入;
△=b^2-4ac>0;两根分别为:X1=-a-1;X2=3;
那么就得分析:X1;X2关系.
当:-a-1>3;则:a
我帮你分析一下:
原函数的导数:F'(X)=(2X+a)e^(3-x)-(x^2+ax+b)e^(3-x)=e^(3-X)[(2-a)x-X^2+(a-b)];
因为在X=3处有极值,因此F'(3)=0;代入解得:2a+b+3=0;
因此:b=-2a-3;函数的单调区间:令F’(X)=0;-X^2+(2-a)X+a-b=0;将b=-2a-3代入;
△=b^2-4ac>0;两根分别为:X1=-a-1;X2=3;
那么就得分析:X1;X2关系.
当:-a-1>3;则:a