令f(x)=x^2+z*x+z^2+3*y(x+y+z)=x^2+(z+3*y)*x+z^2+3y^2+3yz,即把y、z看成常量,根的判别式=(z+3*y)^2-4(z^2+3y^2+3yz)=-3(z+y)^2=0.证别.
设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0
1个回答
相关问题
-
设x、y、z∈R+,x-2y+3z=0 ,则y^2/(xz)的最小值为( ).
-
已知x≥y≥z时,求证:(x+z)y≥y²+xz
-
已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.
-
设x,y,z≥0,且x+y+z=1,求证:0≤xy+yz+xz-2xyz≤7/27
-
设x,y,z>0,求证:(x+y+z)^5-(x^5+y^5+z^5)>=10(x+y)(y+z)(z+x)(xy+yz
-
已知x>0,y>0,z>0.求证(y/x+z/x)(x/y+z/y)(x/z+y/z)>=8
-
设x,y,z∈R+,求证 2z2-x2-y2/(x+y)+2x2-y2-z2/(y+z)≥x2+z2-2y2/(x+z)
-
设2X-3Y-Z=0,X+3Y-14Z=0,X≠0,求x^3y+5xyz+xz/y^2+z^2的最小值.
-
设0<x,y,z<1,求证x(1-y)+y(1-z)+z(1-x)<1
-
设X Y Z属于R,求证x²+y²+z²≥xy+yz+zx