(1)
2Sn=S(n-1)-【(1/2)^(n-1)】+2
2^n. Sn - 2^(n-1) S(n-1) =-1+ 2^(n-1)
2^n. Sn - 2^1. S1 =(-1+ 2^1)+(-1+2^2)+...+[-1+ 2^(n-1)]
= -(n-1) + 2[ 2^(n-1) -1 ]
= -n-1 + 2^n
2^n. Sn = -n + 2^n
Sn = 1-n.(1/2)^n
an = Sn - S(n-1)
= [ -n/2 + (n-1) ](1/2)^(n-1)
=[ (n-2)/2] . (1/2)^(n-1) ; n>=2
= 1/2 ; n=1
(2)
Sn = 1-n.(1/2)^n
consider
f(x) = 1- x(1/2)^x
f'(x) = -(1/2)^x. [ 1+ x ln(1/2) ] =0
x = -1/ln(1/2) = 1.442
S1 = 1/2
S2 = 1-2.(1/2)^2 = 1/2
Sn的取值范围 = [ 1/2 , 1)