设点A坐标为:(acosθ,sinθ),则
|AB|=√[(acosθ-0)^2+(sinθ+1)^2]
=√[a^2cos^2θ+sin^2θ++2sinθ+1]
=√[a^2(1-sin^2θ)+sin^2θ++2sinθ+1]
=√(1-a^2)sin^2θ+2sinθ+a^2+1]
=√(1-a^2)[sinθ-1/(a^2-1)]^2-1/(1-a^2)+a^2+1]
∵a>1
对a讨论:1)1
设点A坐标为:(acosθ,sinθ),则
|AB|=√[(acosθ-0)^2+(sinθ+1)^2]
=√[a^2cos^2θ+sin^2θ++2sinθ+1]
=√[a^2(1-sin^2θ)+sin^2θ++2sinθ+1]
=√(1-a^2)sin^2θ+2sinθ+a^2+1]
=√(1-a^2)[sinθ-1/(a^2-1)]^2-1/(1-a^2)+a^2+1]
∵a>1
对a讨论:1)1