y'=(2x-y+1)/(2x-y-1)的通解
t'=(t-3)/(t-1)==>(t-1)dt/(t-3)=dx="}}}'>

1个回答

  • 设2x-y=t,则y'=2-t'

    代入原方程得2-t'=(t+1)/(t-1)

    ==>t'=(t-3)/(t-1)

    ==>(t-1)dt/(t-3)=dx

    ==>[1+2/(t-3)]dt=dx

    ==>t+2ln│t-3│=x+2ln│C│ (C是积分常数)

    ==>ln│t-3│=(x-t)/2+ln│C│

    ==>t-3=Ce^((x-t)/2)

    ==>2x-y-3=Ce^((y-x)/2)

    故原方程的通解是2x-y-3=Ce^((y-x)/2) (C是积分常数).