设2x-y=t,则y'=2-t'
代入原方程得2-t'=(t+1)/(t-1)
==>t'=(t-3)/(t-1)
==>(t-1)dt/(t-3)=dx
==>[1+2/(t-3)]dt=dx
==>t+2ln│t-3│=x+2ln│C│ (C是积分常数)
==>ln│t-3│=(x-t)/2+ln│C│
==>t-3=Ce^((x-t)/2)
==>2x-y-3=Ce^((y-x)/2)
故原方程的通解是2x-y-3=Ce^((y-x)/2) (C是积分常数).
设2x-y=t,则y'=2-t'
代入原方程得2-t'=(t+1)/(t-1)
==>t'=(t-3)/(t-1)
==>(t-1)dt/(t-3)=dx
==>[1+2/(t-3)]dt=dx
==>t+2ln│t-3│=x+2ln│C│ (C是积分常数)
==>ln│t-3│=(x-t)/2+ln│C│
==>t-3=Ce^((x-t)/2)
==>2x-y-3=Ce^((y-x)/2)
故原方程的通解是2x-y-3=Ce^((y-x)/2) (C是积分常数).