解题思路:先根据三角形的内角和定理求出∠CDE=30°,再利用三角形的一个外角等于与它不相邻的两个内角的和,求出∠ACD=10°,∠BCD=10°,即可求出∠BCE的度数.
在△DEC中,
∵CE⊥AB,∠DCE=60°,
∴∠CDE=30°,
∵∠BAC=∠BCA,CD平分∠ACB,
∴∠A=∠ACB=2∠ACD=2∠BCD,
又∵∠CDE=∠A+∠ACD=3∠ACD,
∴∠ACD=10°,
∴∠BCD=10°,
∴∠BCE=∠DCE-∠BCD=50°.
点评:
本题考点: 三角形的外角性质;三角形内角和定理.
考点点评: 本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.