是否存在常数a、b、c,使等式1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=an^4+bn

4个回答

  • 1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)

    =(1+2+..+n)*n^2-(1^3+2^3+..+n^3)

    其中:1+2+3+..+n=n*(n+1)/2

    1^3+2^3+...+n^3=[n(n+1)/2]^2

    所以:

    1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)

    =(1+2+..+n)*n^2-(1^3+2^3+..+n^3)

    =n^3*(n+1)/2 -[n(n+1)/2]^2

    =n*(n+1)(2n^2-n^2-n)/4

    =(n^2+n)(n^2-n)/4

    =(n^4-n^2)/4

    对比an^4+bn^2+c

    a=1/4,b=-1/4,c=0

    所以存在常数a、b、c,使等式1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=an^4+bn^2+c对一切正整数n都成立.

    补充:

    1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2

    (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]

    =(2n^2+2n+1)(2n+1)

    =4n^3+6n^2+4n+1

    2^4-1^4=4*1^3+6*1^2+4*1+1

    3^4-2^4=4*2^3+6*2^2+4*2+1

    4^4-3^4=4*3^3+6*3^2+4*3+1

    .

    (n+1)^4-n^4=4*n^3+6*n^2+4*n+1

    各式相加有

    (n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n

    4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n

    =[n(n+1)]^2

    1^3+2^3+...+n^3=[n(n+1)/2]^2