(1)楼上第一问的回答漏掉了题目条件,
已求出f(0)=1或0
若f(0)=0,令y=0,依条件有f(x)=f(x)f(0)=0,f(x)为常函数,与题目不符,所以,只有f(0)=1
又由当x1且f(x)在R上为单调函数,故可知f(x)在R上为单调减函数.
(2)由f(a(n+1))=1/f(-2-an)得
f(a(n+1))f(-2-an)=f(a(n+1)-an-2)=1
由a1=f(0)=1
得f(a(n+1)-an-2)=f(0)
又因为f(x)是单调函数,就一定有
a(n+1)-an-2=0
故an是以1为首项,2为公差的等差数列
an=1+2(n-1)=2n-1