lim(x→0+)[ln(sin5x)]/[ln(sin3x)]
=lim(x→0+)[5cos5x/sin5x]/[3cos3x/sin3x]
=lim(x→0+)[5cos5x×sin3x]/[3cos3x×sin5x]
=1(L'Hospital法则)
补充:lim(x→0+)cos5x=1,lim(x→0+)cos3x=1,因为这是连续函数求极限,直接代入.
lim(x→0+)[sin3x/sin5x]
=3/5
lim(x→0+)[ln(sin5x)]/[ln(sin3x)]
=lim(x→0+)[5cos5x/sin5x]/[3cos3x/sin3x]
=lim(x→0+)[5cos5x×sin3x]/[3cos3x×sin5x]
=1(L'Hospital法则)
补充:lim(x→0+)cos5x=1,lim(x→0+)cos3x=1,因为这是连续函数求极限,直接代入.
lim(x→0+)[sin3x/sin5x]
=3/5