首先,可以证明在斜三角形ABC中:tanA+tanB+tanC=tanAtanBtanC
证:A+B+C=180º
A+B=180º-C,tan(A+B)=tan(180º-C)=-tanC
[tanA+tanB]/[1-tanAtanB]=-tanC
tanA+tanB=-tanC+tanAtanBtanC
tanA+tanB+tanC=tanAtanBtanC
回到本题:
设⊿ABC的外接圆半径为R,则△BOC,△COA,△AOB的面积依次:
(1/2)R^2sin2A,(1/2)R^2sin2B,(1/2)R^2sin2C
△BOC,△COA,△AOB的面积依次成等差数列
(1/2)R^2sin2A+(1/2)R^2sin2C=2(1/2)R^2sin2B
sin2A+sin2C=2sin2B
2sin(A+C)cos(A-C)=4sinBcosB
(sin(A+C)=sinB)
cos(A-C)=2cosB=-2cos(A+C)
cosAcosC+sinAsinC=-2(cosAcosC-sinAsinC)
sinAsinC=3cosAcosC
tanAtanC=3
tanAtanBtanC=3tanB
tanA+tanB+tanC=3tanB
tanA+tanC=2tanB
tana,tanb,tanc是等差数列.
注意每一步都可以逆推,问题得证.