由等腰梯形的性质证得△ADH≌△BCH,得∠DAH=∠CBH,在Rt△AHD中,由AM=DM,得出∠MAH=∠MHA,证得△CHN∽△CHN而∠CHB=90°故有∠HNC=90°即MN⊥BC;
命题II:1,2,⇒3
由于Rt△HNC∽Rt△CHB,有∠CHN=∠HBC而∠MAH=∠HBC,得到∠CHN=∠MHA=∠MAH,由等边对等角知,MH=MA,又△DHA为直角三角形,故有AM=DM;
命题III:1,2,⇒3
由于Rt△HNC∽Rt△CHB有∠CHN=∠HBC,在Rt△AHD中,有∠MAH=∠MHA,而∠MHA=∠CHN故有∠DAH=∠CBH得到Rt△DHA∽Rt△CHB
有AD:BC=DH:CH=AH:HB (1)
又CD∥AB∴△DHC∽△AHB,
有DH:HB=CH:HA(2)
由(1)(2)知AD=BC命题1:1,3,⇒2,
在梯形ABCD中,∵AD=BC,
∴△ADH≌△BCH,
∴∠DAH=∠CBH,
在Rt△AHD中,AM=DM,
∴AM=HM
∴∠MAH=∠MHA,
又∠MHA=∠CHN
∴∠CHN=∠CBH
∴△CHN∽△CHN而∠CHB=90°
∴∠HNC=90°即MN⊥BC,
命题2:1,2,⇒3
∵MN⊥BC,
∴Rt△HNC∽Rt△CHB