(1)a2+b2+5-2(2a-b)=a^2-4a+4+b^2+2b+1=(a-2)^2+(b+1)^2≥0
a2+b2+5≥2(2a-b)
(2):(a2+b2)(c2+d2)-(ac+bd)2=a^2d^2-2acbd+b^2c^2=(ad-bc)^2>0
(a2+b2)(c2+d2)>(ac+bd)2
(1)a2+b2+5-2(2a-b)=a^2-4a+4+b^2+2b+1=(a-2)^2+(b+1)^2≥0
a2+b2+5≥2(2a-b)
(2):(a2+b2)(c2+d2)-(ac+bd)2=a^2d^2-2acbd+b^2c^2=(ad-bc)^2>0
(a2+b2)(c2+d2)>(ac+bd)2