(1)证明:如图1所示:
在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠ABC=60°,BC= 1/2AB.
∵BD平分∠ABC,
∴∠1=∠DBA=∠A=30°.
∴DA=DB.
∵DE⊥AB于点E.
∴AE=BE=1/2AB.
∴BC=BE.
∴△EBC是等边三角形;
(2)结论:AD=DG+DM.
证明:
如图2所示:延长ED使得DN=DM,连接MN,
∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,
∴∠ADE=∠BDE=60°,AD=BD,
又∵DM=DN,
∴△NDM是等边三角形,
∴MN=DM,
在△NGM和△DBM中,
∵
∠N=∠MDB
MN=DM
∠NMC=∠DMB
∴△NGM≌△DBM,
∴BD=NG=DG+DM,
∴AD=DG+DM.
(3)结论:AD=DG-DN.
证明:延长BD至H,使得DH=DN.
由(1)得DA=DB,∠A=30°.
∵DE⊥AB于点E.
∴∠2=∠3=60°.
∴∠4=∠5=60°.
∴△NDH是等边三角形.
∴NH=ND,∠H=∠6=60°.
∴∠H=∠2.
∵∠BNG=60°,
∴∠BNG+∠7=∠6+∠7.
即∠DNG=∠HNB.
在△DNG和△HNB中,
DN=HN
∠DNG=∠HNB
∠H=∠2
∴△DNG≌△HNB(ASA).
∴DG=HB.
∵HB=HD+DB=ND+AD,
∴DG=ND+AD.
∴AD=DG-ND.