已知tana=1,3sinB=sin(2a+B),求tan(a+b/2)

1个回答

  • tana=1 a=kπ+π/4

    3sinB=sin(2a+B)=sin(2kπ+π/2+B)=cosB

    3sinB=cosB

    sin^2B+cos^2B=1

    cos^2B=9/10 sin^2B=1/10

    sinB=√10/10 cosB=3√10/10

    tan(a+b/2)=(1+tamB/2)/(1-tanB/2)=(cosB/2+sinB/2)/(cosB/2-sinB/2)

    =(1+sinB)/cosB

    =(√10+1)/3

    sinB=-√10/10 cosB=-3√10/10

    tan(a+b/2)=(1+tamB/2)/(1-tanB/2)=(cosB/2+sinB/2)/(cosB/2-sinB/2)

    =(1+sinB)/cosB

    =(-√10+1)/3