设k1σε1+k2σε2+k3σε3=0
必要性.
k1σε1+k2σε2+k3σε3=0
σ(k1ε1+k2ε2+k3ε3)=0
两边作逆变换,得
k1ε1+k2ε2+k3ε3=0
从而,k1=k2=k3.
充分性.
因σε1,σε2,σε3线性无关
故是V的一组基
从而存在一个线性变换μ使得,
μ(σε1)=ε1,μ(σε2)=ε2,μ(σε3)=ε3
由可逆变换的定义知道,μ为σ逆变换.
这个结果可以推广到n维线性空间上面去.
设k1σε1+k2σε2+k3σε3=0
必要性.
k1σε1+k2σε2+k3σε3=0
σ(k1ε1+k2ε2+k3ε3)=0
两边作逆变换,得
k1ε1+k2ε2+k3ε3=0
从而,k1=k2=k3.
充分性.
因σε1,σε2,σε3线性无关
故是V的一组基
从而存在一个线性变换μ使得,
μ(σε1)=ε1,μ(σε2)=ε2,μ(σε3)=ε3
由可逆变换的定义知道,μ为σ逆变换.
这个结果可以推广到n维线性空间上面去.