解题思路:根据翻折变换的特点可把直角三角形EFC三边用BF表示出来,利用勾股定理列方程求解即可.
∵B恰好落在CD边的中点E处,
∴AD=
36−9=3
3,
设BF=x,则FC=3
3-x,CE=3,
根据勾股定理列方程得x2=(3
3-x)2+9,
解得x=BF=2
3.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 本题考查图形的翻折变换和利用勾股定理建立关于x的方程模型解题的方法,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.