袋中装有大小相同的5个红球和3个黄球,从中任取2个1)取出两个红球概率(2)取出两个颜色相同的球概率

1个回答

  • 首先你要明确概率公式:

    概率 = 满足条件排列÷全排列

    下面C(a,b)表示从b个对象中任取a个的组合数

    另外,组合公式为 C(a,b) = b!/[a!(b-a)!]

    (1)满足条件排列数 = C(2,5) = 5!/(2!3!) = (5!/3!)/2! = 5*4/2 = 10

    全排列 = C(2,8) = 8!/(2!6!) = (8!/6!)/2! = 8*7/2 = 28

    ∴所求概率p = 10/28 ≈ 0.3571

    (2)满足条件排列数 = C(2,5) + C(2,3) = 5!/(2!3!) + 3!/(2!1!) = 10 + 3 = 13

    全排列 = C(2,8) = 8!/(2!6!) = (8!/6!)/2! = 8*7/2 = 28

    ∴所求概率p = 13/28 ≈ 0.4643

    (3)(用排除法)

    只取出黄球的排列数 = C(2,3) = 3!/(2!1!) = 3

    全排列 = C(2,8) = 8!/(2!6!) = (8!/6!)/2! = 8*7/2 = 28

    ∴所求概率p = (28-3)/28 ≈ 0.8929