B = (A+A')/2 ; B' = (A'+A)/2 = B
C = (A-A')/2 ; C' = (A'-A)/2 = -C
A = B+C
又设:A = B1+C1 ;其中:B1' = B1 ; C1' = -C1
A = B+C = B1+C1 ;
∴ C1-C = B-B1 = (B-B1)' = (C1-C)'= -C1+C
∴-C1+C = C1-C
从而:
C1 = C
B1 = B
B = (A+A')/2 ; B' = (A'+A)/2 = B
C = (A-A')/2 ; C' = (A'-A)/2 = -C
A = B+C
又设:A = B1+C1 ;其中:B1' = B1 ; C1' = -C1
A = B+C = B1+C1 ;
∴ C1-C = B-B1 = (B-B1)' = (C1-C)'= -C1+C
∴-C1+C = C1-C
从而:
C1 = C
B1 = B