∵AD是∠CAB的平分线
∴∠BAD=1/2∠BAC
∵∠DBC=1/2(180°-∠ABC)=90°-1/2∠ABC
∴∠D=180°-(∠BAD+∠ABC+∠DBC)
=180°-(1/2∠BAC+∠ABC+90°-1/2∠ABC)
=90°-1/2(∠BAC+∠ABC)
=90°-1/2(180°-∠C)
=1/2∠C
=35°
∵AD是∠CAB的平分线
∴∠BAD=1/2∠BAC
∵∠DBC=1/2(180°-∠ABC)=90°-1/2∠ABC
∴∠D=180°-(∠BAD+∠ABC+∠DBC)
=180°-(1/2∠BAC+∠ABC+90°-1/2∠ABC)
=90°-1/2(∠BAC+∠ABC)
=90°-1/2(180°-∠C)
=1/2∠C
=35°