sin △x -cos △x +1=根号2 *[ (根号2)/2 *sin △x -(根号2)/2 *cos △x] +1
=根号2 *[ sin △x cos (pi/4) -cos △x sin (pi/4) ] +1
=根号2 *sin (△x -pi/4) +1.
= = = = = = = = =
辅助角公式:
a sin x +b cos x =根号(a^2+b^2) *sin (x+t),
其中 t= arctan (b/a).
例:
(1) 3 sin x +4 cos x =5 [ (3/5) sin x +(4/5) cos x].
令 t=arctan 4/3,即 tan t=4/3,
则 cos t =3/5,sin t =4/5.(画直角三角形可知)
所以 3 sin x +4 cos x =5 (sin x cos t +cos x sin t)
=5 sin (x+t)
=5 sin [ x +arctan (4/3) ].
(2) sin x -(根号3)cos x =2 [(1/2) sin x -(根号3)/2 *cosx]
=2 [ sin x cos (pi/3) -cos x sin (pi/3)]
=2 sin (x-pi/3).
(3) -3 sin x +4 cos x = -5 [ (3/5) sin x -(4/5) cos x]
令 t=arctan 4/3,即 tan t=4/3,
则 cos t =3/5,sin t =4/5.
所以 -3 sin x +4 cos x = -5 (sin x cos t -cos x sin t)
= -5 sin (x -t)
= -5 sin [ x -arctan (4/3) ].
辅助角公式,正负是个大问题.最好问一下老师.