把△ADN绕着点A按顺时针方向旋转90°后,得到△ABE,
∴AE=AN,BE=DN,∠ABE=∠D=90°,∠NAE=90°,
而∠ABC=90°,
∴点M、B、E共线,
∴ME=BE+BM=DN+BM,
∵△MCN的周长等于正方形ABCD周长的一半,
∴MN+NC+MC=DC+BC=DN+NC+MC+BM,
∴MN=DN+BM,
∴MN=ME,
∵在△MAN和△MAE中,
AN=AE
MN=ME
AM=AM ,
∴△MAN≌△MAE(SSS),
∴∠NAM=∠EAM,
∴∠MAN=
1
2 ∠NAE=45°.
故答案为45°.