解题思路:(1)由三角形ABC为等腰直角三角形,利用等腰直角三角形的性质得到AB=AC,且∠ABC=∠ACB=45°,利用同角的余角相等得到一对角相等,再由一对直角相等,且AB=AC,利用AAS得到三角形ABM与三角形CAF全等;
(2)由全等三角形的对应边相等得到AM=CF,由M为AC中点,得到AM=CM,等量代换得到CM=CF,由公共边CD=CD,且夹角相等得到三角形CMD与三角形CFD全等,利用全等三角形对应角相等得到∠DMC=∠F,等量代换即可得证.
证明:(1)∵在△ABC中,∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠F+∠CAF=90°,∠CAF+∠AMB=90°,
∴∠F=∠AMB,
在△ABM和△CAF中,
∠BAM=∠ACF
∠AMB=∠F
AB=CA,
∴△ABM≌△CAF(AAS);
(2)∵∠MCD=45°,
∴∠FCD=90°-∠MCD=45°,
∵M为AC的中点,
∴AM=CM,
∵△ABM≌△CAF,
∴AM=CF,
∴CM=CF,
在△CMD和△CFD中,
CM=CF
∠MCD=∠FCD
CD=CD,
∴△CMD≌△CFD(SAS),
∴∠DMC=∠F,
则∠AMB=∠DMC.
点评:
本题考点: 全等三角形的判定与性质;等腰直角三角形.
考点点评: 此题考查了全等三角形的判定与性质,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.