(1)设椭圆方程为x²/a²+y²/b²=1(a>b>0) 由e=√3/3,得a=√3c,b=√2c 设l:y=x-c,即x-y-c=0∴c/√2=√2/2,c=1,a=√3,b=√2椭圆方程为x²/3+y²/2=1(2)设l':y=kx+m,与x²/3+y²/2...
已知椭圆C的中心在坐标原点O,焦点在x轴上,离心率为根号3/3,过其右焦点F的直线l的斜率为1时,坐标原点O到l的距离是
1个回答
相关问题
-
椭圆的中心为坐标原点O,焦点在x轴上,离心率为√2/2,坐标原点到过右焦点F且斜率为1的直线n的距离为√2/2
-
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为1/2,且椭圆的左顶点到右焦点的距离为3
-
已知中心在原点O,焦点在x轴上的椭圆C离心率为根号3/2,
-
中心在坐标原点,焦点在x轴上的椭圆的离心率为根号3/2
-
已知椭圆C的对称中心为原点O,焦点在X轴上,离心率1/2为,且点(1.3/2)在该椭圆上.求过椭圆左焦点F的直线L
-
已知椭圆C的对称中心为原点O,焦点在X轴上,离心率1/2为,且点(1.3/2)在该椭圆上.求过椭圆左焦点F的直线L
-
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为1 2 ,椭圆C上的点到焦点距离的最大值为3.
-
已知中心在坐标原点,焦点F1、F2在x轴上的椭圆C的离心率为2分之根号3,
-
已知椭圆的中心在坐标原点O,长轴长为2倍根号2,离心率e=2分之根号2,过右焦点F的直线L交椭圆于P,Q两点,且直线L的
-
已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点, 与a=(3,﹣1)共线.