高数求通解y’=(y^2-x)/2y(x-1)

2个回答

  • 由原方程进行变换:

    2y*y'=(y^-x)/(x-1)

    2y*dy/dx=(y^-x)/(x-1)

    d(y^)/dx=(y^-x)/(x-1)

    令t=y^,于是原方程转化为关于t和x的微分方程:

    dt/dx=(t-x)/(x-1)

    dt/dx +[-1/(x-1)]*t=-x/(x-1)

    此为一阶线性非齐次方程

    其中,p(x)=-1/(x-1),q(x)=-x/(x-1)

    套用公式:

    ∫p(x)dx=∫-dx/(x-1)=-ln(x-1)

    于是,e^[-∫p(x)dx]=e^[ln(x-1)]=x-1

    e^[∫p(x)dx]=e^[-(x-1)]=1/(x-1)

    ∫q(x)*e^[∫p(x)dx]

    =∫[-x/(x-1)]*[1/(x-1)]dx=∫[-x/(x-1)^]dx

    =-∫[(x-1)+1]dx/(x-1)^

    =-∫dx/(x-1) - ∫dx/(x-1)^

    =-ln(x-1) + 1/(x-1)

    =1/(x-1) - ln(x-1)

    于是,可求出

    t=(x-1)*[1/(x-1) - ln(x-1) +C]

    =1+C(x-1)-(x-1)ln(x-1)

    于是:

    y^=1+c(x-1)-(x-1)ln(x-1)