解题思路:(1)知道A的重力,可求出其质量,根据边长求出其的体积,利用密度公式求物体A的密度;
(2)由于物体是静止在水平面上,此时物体对地面的压力F=G,则压强可利用P=[F/S]求得;
(3)在正方体A、B上沿水平方向分别截去相同的体积V后,受力面积不变,求出剩余部分对地面的压力、压强;根据剩余部分对地面的压强相等,列出方程求V的大小;进而得出它们对水平地面的压强大小关系及其对应的V的取值范围
(1)
ρA=
mA
VA=
GA
VAg=[980牛
(0.25米)3×9.8牛/千克=6.4×103千克/米3
(ρB=
mB
VB=
GB
VBg=1.5625×103千克/米3)
答:正方体A的密度为6.4×103千克/米3
(2)PB=
FB
SB=
GB
SB=980牛/(0.4米)2=6.125×103帕.
答:正方体B对水平地面的压强为6.125×103帕.
(3)在正方体A、B上沿水平方向分别截去相同的体积V后,受力面积不变,
∵当PA′=PB′
GA-ρA△Vg
SA=
GB-ρB△Vg
SB
∴
GA-ρA△Vg
GB-ρB△Vg=
SA
SB=(
aA
aB)2=
25/64]
∴当△V=0.010525米3时,pA′=pB′
当0<△V<0.010525米3时,pA′>pB′
当0.015625米3>△V>0.010525米3时,pA′<pB′
点评:
本题考点: 密度的计算;压强的大小及其计算.
考点点评: 本题考查了压强的计算、密度的计算,在解题时要记住相关公式,灵活运用密度公式解决比值问题,最后对压强PA′和PB′的大小关系展开讨论.确定两种情况下的地面受力大小和受力面积是本题的关键.