一、当m=n时,
m^4+4n^4=5m^4=(m^2)^2+(m^2)^2+(m^2)^2+(m^2)^2+(m^2)^2.
此时,命题显然成立.
二、当m、n不等时,
m^4+4n^4
=m^4+4(mn)^2+4n^4-4(mn)^2
=(m^2+2n^2)^2-4(mn)^2
=[(m^2+2n^2)+2mn][(m^2+2n^2-2mn]
=[(m^2+2mn+n^2)+n^2][(m^2-2mn+n^2)+n^2]
=[(m+n)^2+n^2][(m-n)^2+n^2]
=[(m+n)(m-n)]^2+[(m+n)n]^2+[(m-n)n]^2+(n^2)^2.
此时,命题也显然成立.
于是,问题得证.