⑴因为二次函数y= ax²+bx+c的图像经过A(﹣4,0),B(﹣1,3),C(﹣3,3),
所以0=16a-4b+c,3=a-b+c,3=9a-3b+c,解得:a=﹣1,b=﹣4,c=0,
故此二次函数的解析式为y=﹣x²-4x;
(2)由题意可知,M、N点坐标分别为(-4-m,n),(m+4,n),
S四边形OAPN=(OA+NP﹚/2×|n|=20,
即4|n|=20,
∴|n|=5.
∵点P(m,n)在第三象限,
∴n=﹣5,
所以-m2-4m+5=0,
解得m=﹣5或m=1(舍去).
故所求m、n的值分别为﹣5,﹣5.