acosC=(2b-c)cosA
用正弦定理将abc分别用对角的sin代入.
可得sinAcosC=2sinBcosA-sinCcosA
sinAcosC+sinCcosA=2sinBcosA
sin(A+C)=2sinBcosA
sinB=2sinBcosA
cosA=1/2
A=60°
(2)求y=2(sinB)^2+cos(π/3-2B)的值域
y=2(sinB)^2+cos(π/3-2B)
=1-cos2B+1/2cos2B+√3/2sin2B
=1+√3/2sin2B-1/2cos2B
=1+sin(2B-30°)
又因为 A=60° 那么 0°