(1)若a-b=4,b+c=2,求:a^2+b^2+c^2-ab+bc+ca的值

1个回答

  • (1)若a-b=4,b+c=2,求:a^2+b^2+c^2-ab+bc+ca的值

    若a-b=4,

    b+c=2

    两式相加,得

    a+c=6

    a^2+b^2+c^2-ab+bc+ca

    =(2a^2+2b^2+2c^2-2ab+2bc+2ca)/2

    =(a^2-2ab+b^2+b^2+2bc+c^2+a^2+2ac+c^2)/2

    =[(a-b)^2+(b+c)^2+(a+c)^2]/2

    =(4^2+2^2+6^2)/2

    =(16+4+36)/2

    =56/2

    =28

    (2)已知x^2-3x-1=0,则x^2+1/x^2=

    x^2-3x-1=0

    当x不等于0时,

    x-3-1/x=0

    x-1/x=3

    (x-1/x)^2=9

    x^2-2*x*(1/x)+1/x^2=9

    x^2-2+1/x^2=9

    x^2+1/x^2=11