(1+n/m-m/m-n)=m(m-n)+n(m-n)-m]/[m(m-n)]=(m^2-n^2-m)/[m(m-n)]
(1-n/m-m/m+n)=m(m+n)-n(m+n)-m]/[m(m-n]=(m^2-n^2-m)/[m(m+n)]
∴(1+n/m-m/m-n)/(1-n/m-m/m+n)=(m+n)/(m-n)
(1+n/m-m/m-n)=m(m-n)+n(m-n)-m]/[m(m-n)]=(m^2-n^2-m)/[m(m-n)]
(1-n/m-m/m+n)=m(m+n)-n(m+n)-m]/[m(m-n]=(m^2-n^2-m)/[m(m+n)]
∴(1+n/m-m/m-n)/(1-n/m-m/m+n)=(m+n)/(m-n)