自学,(1)已知x/a+y/b+z/c=1,a/x+b/y+c/z=0,求x2/a2+y2/b2+z2/c2的值(2)已

3个回答

  • 令x/a=m, y/b=n, z/c=p

    m+n+p=1, 1/m+1/n+1/p=0, 求m^2+n^2+p^2的值.

    1/m+1/n+1/p=0, mn+np+mp=0

    (m+n+p)^2=m^2+n^2+p^2+2(mn+np+mp)=m^2+n^2+p^2=1

    所以:m^2+n^2+p^2=1,即所求的值是1.

    或者:

    x/a+y/b+z/c=1得:bcx+acy+abz=abc

    a/x+b/y+c/z=0得:ayz+bxz+cxy=0

    由ayz+bxz+cxy=0得:

    abc(cxy+bxz+ayz)=0

    2abc(cxy+bxz+ayz)=0

    2abc^2xy+2ab^2cxz+2a^2bcyz=0

    由bcx+acy+abz=abc得:

    a^2b^2c^2=a^2b^2z^2+b^2c^2x^2+a^2b^2z^2+2abc^2xy+2ab^2cxz+2a^2bcyz

    因为:2abc^2xy+2ab^2cxz+2a^2bcyz=0,所以:

    a^2b^2c^2=a^2b^2z^2+b^2c^2x^2+a^2b^2z^2

    两边同时除a^2b^2c^2得:

    1=z^2/c^2+x^2/a^2+z^2/c^2

    即:x^2/a^2+y^2/b^2+z^2/c^2=1

    第二题目中是否是:+(1-1/x)^4,?