证:由a,b,c是互不相等的正数,且a,b,c成等比数列得:b^2=ac
f(a)+f(c)=log2(a+2)+log2(c+2)=log2(ac+2a+2c+4)=log2[b^2+2(a+c)+4]>log2(b^2+4√2b+4)>log2(b^2+4b+4)=2log(b+2)=2f(b).所以得证.
证:由a,b,c是互不相等的正数,且a,b,c成等比数列得:b^2=ac
f(a)+f(c)=log2(a+2)+log2(c+2)=log2(ac+2a+2c+4)=log2[b^2+2(a+c)+4]>log2(b^2+4√2b+4)>log2(b^2+4b+4)=2log(b+2)=2f(b).所以得证.