设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a
2个回答
设F(x)=f(x)-f(x+a)
F(0)=f(0)-f(a)
F(a)=f(a)-f(2a)
F(0)* F(a)
相关问题
设f(x)在[0a]上连续,在(0a)内可导,且f'(a)=0,证明存在一点ξ满足f(ξ)+ξ f'(ξ)=0
设f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明:至少存在一点ξ∈(a,b),使得f(ξ)=ξ.
定积分证明设f(x)在〔a,b〕上连续,证明必存在ξ∈(a,b)使得(ξ-b)f(ξ)+∮(a,ξ)f(x)dx=0
设函数f(x)在[0,1]上连续,且f(1)=0,f(0)=1,求证:存在一点ξ∈[0,1]使得f`(ξ)=-f(ξ)/
介值定理的问题函数f(x)在[0,2a]上连续,且f(0)=f(2a),证明:在[0,2a]上至少存在一点ξ,使f(ξ)
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f′(x)≠0.试证存在ξ、η∈(a,b),使得f′(ξ)f′(
设f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(ξ)−f(a)b−ξ=f′(ξ
设函数f(x)在闭区间[0,1]上连续,且f(0)=1,f(1)=0,求证:存在一点ξ属于(0.1),使得f(ξ)=ξ
设f(x)在[0,1]上连续,证明在(0,1)内至少存在一点ξ,使∫f(x)dx=(1-ξ)f(ξ)
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b)使得f'(ξ)+f'