m,n是方程x²-x-1=0的根,由韦达定理得
m+n=1
mn=-1
m^5+n^5-5m-5n
=(m³+n³)(m²+n²)-m³n²-m²n³-5m-5n
=[(m+n)(m²-mn+n²)][(m+n)²-2mn]-m²n²(m+n)-5(m+n)
=[(m+n)[(m+n)²-3mn]][(m+n)²-2mn]-m²n²(m+n)-5(m+n)
=[1×(1+3)](1+2)-1-5
=12-1-5
=6
m,n是方程x²-x-1=0的根,由韦达定理得
m+n=1
mn=-1
m^5+n^5-5m-5n
=(m³+n³)(m²+n²)-m³n²-m²n³-5m-5n
=[(m+n)(m²-mn+n²)][(m+n)²-2mn]-m²n²(m+n)-5(m+n)
=[(m+n)[(m+n)²-3mn]][(m+n)²-2mn]-m²n²(m+n)-5(m+n)
=[1×(1+3)](1+2)-1-5
=12-1-5
=6