设x=根号n+1-根号n/根号n+1+根号n =(根号n+1-根号n)^2
y=根号n+1+根号n/根号n+1-根号n =(根号n+1+根号n)^2
所以x+y=2(n+1)+2n=4n+2=2(2n+1)
xy=1
2x^+217xy+2y^
=2(x+y)^2+213xy
=8(2n+1)^2+213
=2013
(2n+1)^2=1800/8=225
2n+1=15
n=7
设x=根号n+1-根号n/根号n+1+根号n =(根号n+1-根号n)^2
y=根号n+1+根号n/根号n+1-根号n =(根号n+1+根号n)^2
所以x+y=2(n+1)+2n=4n+2=2(2n+1)
xy=1
2x^+217xy+2y^
=2(x+y)^2+213xy
=8(2n+1)^2+213
=2013
(2n+1)^2=1800/8=225
2n+1=15
n=7