解题思路:先利用求根公式求出x1=m,x2=m+1,则2m-3(m+1)=m2-k,整理得m2+m+3-k=0,当此一元二次方程有实数解时,2x1-3x2=m2-k成立,根据判别式的意义得到△′=1-4(3-k)≥0,然后解不等式即可.
根据题意得△=(2m+1)2-4(m2+m)=1,
x=[2m+1±1/2],
解得x1=m,x2=m+1,
∵2x1-3x2=m2-k,
∴2m-3(m+1)=m2-k,
整理得m2+m+3-k=0,
△′=1-4(3-k)≥0,
解得k≥[11/4],
即当k≥[11/4]时,使得2x1-3x2=m2-k成立.
点评:
本题考点: 根与系数的关系;根的判别式.
考点点评: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-[b/a],x1•x2=[c/a].也考查了根的判别式.