(1)①∵等差数列{a n}为递增数列,且a 2,a 5是方程x 2-12x+27=0的两根,
∴a 2+a 5=12,a 2a 5=27,
∵d>0,∴a 2=3,a 5=9,
∴d=
a 5 - a 2
3 =2,a 1=1,
∴a n=2n-1(n∈N *)
②∵T n=1-
1
2 b n,
∴令n=1,得b 1=
2
3 ,
当n≥2时,T n=1-
1
2 b n,T n-1=1-
1
2 b n-1,两式相减得,b n=
1
2 b n-1-
1
2 b n,
∴
b n
b n-1 =
1
3 (n≥2),
数列{b n}是以
2
3 为首项,
1
3 为公比的等比数列.
∴bn=
2
3 • (
1
3 ) n-1 = 2•
1
3 n (n∈N *).
(2)∵bn= 2•
1
3 n ,C n=
3 n b n
a n a n+1 ,
∴C n=
3 n ×2×
1
3 n
(2n-1)(2n+1) =
1
2n-1 -
1
2n+1 .
∴S n= (1-
1
3 )+(
1
3 -
1
5 )+ …+ (
1
2n-1 -
1
2n+1 ) = 1-
1
2n+1 =
2n
2n+1 .