1):函数f(x)=sin(2wx-π/6)加1(w大于0,x属于r)的最小正周期为π
最小正周期为2π/2w=π/w
所以w=1
f(x)=sin(2x-π/6)+1
f(x)‘=2cos(2x-π/6)>0
2nπ-π<2x-π/6<2nπ
nπ-(5/12)π<x<nπ+π/12
2):x属于[π/4,π/2]
(1/3)π<2x-π/6<(5/6)π
当2x-π/6=(1/2)π时 f(x)最大 =1+1=2
当2x-π/6=(5/6)π时 f(x)最小 =0.5+1=1.5
1):函数f(x)=sin(2wx-π/6)加1(w大于0,x属于r)的最小正周期为π
最小正周期为2π/2w=π/w
所以w=1
f(x)=sin(2x-π/6)+1
f(x)‘=2cos(2x-π/6)>0
2nπ-π<2x-π/6<2nπ
nπ-(5/12)π<x<nπ+π/12
2):x属于[π/4,π/2]
(1/3)π<2x-π/6<(5/6)π
当2x-π/6=(1/2)π时 f(x)最大 =1+1=2
当2x-π/6=(5/6)π时 f(x)最小 =0.5+1=1.5