[2^(n+3)-16*2^n]÷2*2^(n+2)
=[2^(n+3)-(2^4)*2^n]÷2^(n+3)
=[2^(n+3)-2^(n+4)]÷2^(n+3)
=[2^(n+3)-2*2^(n+3)]÷2^(n+3)
=2^(n+3)(1-2)÷2^(n+3)
=-2^(n+3)÷2^(n+3)
=-1
[2^(n+3)-16*2^n]÷2*2^(n+2)
=[2^(n+3)-(2^4)*2^n]÷2^(n+3)
=[2^(n+3)-2^(n+4)]÷2^(n+3)
=[2^(n+3)-2*2^(n+3)]÷2^(n+3)
=2^(n+3)(1-2)÷2^(n+3)
=-2^(n+3)÷2^(n+3)
=-1