f'(x) = 3ax^2+2bx+c
f(x)=ax^3+bx^2+cx在x=正负1时取得极值
所以f'(1)=f'(-1)=0
3a+2b+c=0 ---1
3a-2b+c=0 ---2
f(1)=-1
a+b+c=-1 ---3
联合1,2,3得
a=1/2 b=0 c=-3/2
f'(x)=3/2x^2-3/2
=3/2(x+1)(x-1)
x < -1时f'(x) > 0 f(x)递增
-1
f'(x) = 3ax^2+2bx+c
f(x)=ax^3+bx^2+cx在x=正负1时取得极值
所以f'(1)=f'(-1)=0
3a+2b+c=0 ---1
3a-2b+c=0 ---2
f(1)=-1
a+b+c=-1 ---3
联合1,2,3得
a=1/2 b=0 c=-3/2
f'(x)=3/2x^2-3/2
=3/2(x+1)(x-1)
x < -1时f'(x) > 0 f(x)递增
-1